Explorations of the GPS data and what can it tell us about the Ionosphere

Divya Oberoi, Joseph Salah
Bill Rideout, Anthea Coster
Haystack Observatory
Objectives

Feel for GPS data

What can GPS data tell us about spatial and temporal gradients in the electron column density?

\[\theta(\text{rad}) = \frac{40.3}{\nu^2} \cdot \nabla n_e \]

- 0.1 TECU/km ⇒ 3.5' (200 MHz)
- 0.5 TECU/km ⇒ 17' (200 MHz)

TID studies at Haystack using GPS and ISR data (Takuya Tsugawa, JSPS Fellow)

December 07, 2006, 3 receivers running at Haystack

Coordinated observing runs with the Millstone Incoherent Scatter Radar

GPS receivers provided by AFRL under the SCINDA (Keith Groves)
Line-of-sight TEC
Vertical TEC

Mapping Function

LOS TEC → Vertical TEC
Effect of elevation

Lesson – place the GPS antenna as close to the ground as possible with an absorber below it
Look at only the high elevation data
The Az-El distribution

Vert TEC
Spatial coverage
Spatial and temporal TEC variations

\[TEC_Z - \langle TEC_Z \rangle, \text{ for 30min bins} \]

Largest gradient seen \(\sim 4 \text{ TECU/100 km}\)
MH ISR Electron Density (Ne) Profile

Takuya Tsugawa: Traveling Ionospheric Disturbances Observed in North America
Background Ne Profile

Background (1h run. ave.) : 2007-01-20

Takuya Tsugawa : Traveling Ionospheric Disturbances Observed in North America
Preliminary Impression

- Except at the lower edge of the band, the TEC gradients don’t seem to be large enough to cause refractive shifts of order of a beamwidth.
- The gradients involved in TIDs are of order 0.01 TEC/km, can cause significant refractive shifts by ~1/10 of a beamwidth (20°).

Work in progress
- Better calibration of the GPS data
- A more extensive look at the data
- Examination of higher time resolution data (1min vs 50ms)
- ...