Antenna tile:
dipoles/groundscreen & analog beamformer

Brian Corey, presenter
Function

- Swallow 80-300 MHz extraterrestrial photons
 - from as much of the sky as possible
 - but not from the horizon or below
 - with as little added noise as possible
 - in both polarizations
- Electronically form a single beam anywhere on the sky from the outputs of multiple, closely packed antenna elements
Specs implied by science requirements

- Tunable frequency range: 80-300 MHz
- Instantaneous frequency range: \(\geq 32 \) MHz
- Collecting area: \(\geq 10 \, \text{m}^2 \) over as much of frequency range as possible
- Field of view: As wide as possible (within constraints of collecting area & physics)
- Polarization: Dual
Key design features

- 16 dual-polarization, bowtie antenna elements over a ground screen
- Elements arranged in compact planar array with $\lambda/2$ spacing at 140 MHz
- Low-noise amplification integral to each element
- Analog RF beamformer with PCB tapped delay lines
Current status of design effort

- Three prototype antenna tiles with beamformers deployed at MWA site during Early Deployment campaign in 2005
- Functionality and performance demonstrated in ED
- Prototype antenna elements, beamformer, and ground screen are too expensive to replicate in large volume
Block diagram of antenna system

One section of 5 sections of switchable delay line – lengths differ by factors of 2

identical circuit for Y signals

PC board delay line

attenuator

beamformer

5 delay line sections

Σ all X’s

1 of 16 crossed dipoles

X

Y
Prototype antenna element - Seavey Eng.
Low-noise amplifier

- Balanced design using two ATF-54143 HEMTs
- Measured noise temperature 14-17 K with 50 ohm loads on inputs, in agreement with simulation
- Measured OIP2 > +63 dBm, OIP3 = +27 dBm
- With LNA connected to prototype element, simulated noise temperature < ½ x sky temperature
Simulated receiver noise temperature (antenna-LNA impedance mismatch included)
Single element power patterns

Single element: 110 MHz, E-plane

![Graph showing power patterns for 110 MHz, E-plane]

Single element: 110 MHz, H-plane

![Graph showing power patterns for 110 MHz, H-plane]

Single element: 200 MHz, E-plane

![Graph showing power patterns for 200 MHz, E-plane]

Single element: 200 MHz, H-plane

![Graph showing power patterns for 200 MHz, H-plane]
Single element power patterns (cont’d)

Single element: 300 MHz, E-plane

Single element: 300 MHz, H-plane
RF analog beamformer

- 4-channel prototype board constructed using coplanar waveguide in 4-layer PCB with 10-ns max delay
- Isolation > 40 dB between channels and between switched lines within a channel
- Delay reproducible between channels to ~0.1 ns (1σ)
- Gain reproducible between channels to ~0.3 dB (1σ)
- Gain independent of delay selected to <1 dB
Simulated antenna tile patterns for beam steered to zenith

80 MHz

153 MHz
Simulated antenna tile patterns for beam steered to zenith (cont’d)

E plane

H plane

227 MHz

300 MHz
Challenges & risks - technical

- No major technical challenges foreseen
- Remaining technical issues:
 - Put 16 channels on a single beamformer board, together with 16-way signal combiner
 - Put both polarizations on a single LNA board (for cost reasons)?
 - Redesign digital interface?
Challenges & risks - cost

- Cost reduction is a major challenge – we can’t afford to do this 500 x 16 times!
- Cost target, including installation, is 2K $US per tile.
- Greatest challenge is to reduce cost of antennas (exclusive of LNAs) and groundscreen to ~700 $US.
- Antenna/groundscreen redesign for manufacturability has been initiated with RDI Inc.
Challenges & risks - schedule

- Design at the CDR level needs to be completed by ~December 2006.
- Pacing item will most likely be redesign for cost reduction.
Skills required

- RF engineering for LNA & beamformer
- RF simulation for antenna modifications (as needed to reduce cost)
- Digital engineering for digital interface
- Mechanical design/engineering for manufacturing
Dependencies on other systems

- Monitor/control
- Receiver
Interface definitions

- **Input:** sky
- **Output:** 2 coax cables per tile to receiver
 - Need gain equalization and level adjustment at receiver input
- **Monitor/control**
 - Set delay line switches and on/off switch for each polarization of each antenna element
 - Set 180° phase shift for each polarization?
 - Read beamformer temperature?