Epoch of Reionization (EOR)

The Epoch of Reionization (EOR) refers to the period in the history of the universe during which the predominantly neutral intergalactic medium was ionized by the emergence of the first luminous sources. These sources may have been stars, galaxies, quasars, or some combination of the above. By studying reionization, we can learn a great deal about the process of structure formation in the universe, and find the evolutionary links between the remarkably smooth matter distribution at early times revealed by CMB studies, and the highly structured universe of galaxies and clusters of galaxies at redshifts of 6 and below. The Low Frequency Demonstrator is designed to provide detailed information on conditions in the intergalactic medium during and immediately preceding the EOR.

The diagram below provides a good graphical representation of the history of the universe, and where the epoch of reionization sits in the overall picture. After the Big Bang, the Universe was a hot, but quickly cooling soup of fundamental particles. After a few hundred thousand years, things cooled enough so that protons and electrons could combine to form neutral hydrogen. This was a rather sudden event, and allowed the thermal glow of the fireball plasma, as it existed immediately before the hydrogen formation event, to radiate throughout the universe unimpeded by constant interactions with the charged particles of the now-absent plasma. This glow, redshifted by a factor of 1100 or so, is what we now observe as the Cosmic Microwave Background (CMB) in all directions. The CMB carries a frozen imprint of the density fluctuations in the early Universe, the study of which, by the observational cosmology community, is intense and sustained.

Graphical representation of the history of the universe

Graphical representation of the history of the universe, by Djorgovski et al, (Caltech). (Full Size Image)

After the Universe became neutral, it became unobservable across much of the electromagnetic spectrum. Any short wavelength radiation that might have been emitted was quickly absorbed by the atomic gas, and a long interval known as the Dark Ages began. Slowly, gravitational collapse of overdense regions, the same regions we can see in the CMB imprint from earlier times, led to the formation of more and more pronounced structure in the neutral medium, and eventually the first stars, galaxies and quasars started to form. The exact mechanism and nature of this formation, poorly constrained by observation, is a topic of much research and great importance. We know what the Universe looked like at the time of the CMB, and we know what it looks like now, but how did it get from one to the other?

As the collapse of structures proceeded, temperature variations developed. Gradually, energetic radiation emitted by the first sources caused local heating, and then ionization of the hydrogen in the Universe. It will have started with "bubbles" of ionized plasma surrounding the most energetic sources. As the bubbles grew and became more numerous, they started to overlap, and more and more of the neutral medium became exposed to the harsh ionizing radiation, which travels unimpeded through ionized regions. The final phase of reionization of the Universe may have occurred swiftly. As soon as the bulk of the Universe was reionized, light at many wavelengths could escape from the early galaxies and quasars, revealing the distant Universe that we see today with optical and infrared telescopes.

Reionization was complete about 1 billion years after the Big Bang, corresponding to a redshift of about 6.5. Before that time, observations rapidly become more difficult. By and large, one must hope to find isolated, very luminous objects whose radiation in one form or another manages to reach us through the increasingly neutral medium. Perhaps the best hope for a more general and comprehensive probe of these early epochs is the 21cm hyperfine transition line of neutral hydrogen, redshifted to frequencies below 200 MHz. Sensitive observations of emission and absorption in this line can probe deeply into the reheating and reionization epochs, and give us a detailed view of the density, temperature and velocity field of the material. We would get a view, not just of isolated luminous objects and the material which happens to lie in front of them, but of large volumes of the Universe at the target redshifts. Such a view would yield a treasure trove of information from which to deduce the early history of structure formation, and the origin of the stars, galaxies, clusters and quasars that we see today.

Graphical representation of the history of the universe

Simulation of redshifted 21cm emission/absorption at z~8.5, from Tozzi et al. (2000). The peak brightness is about 10 mK. The MWA EOR key project aims to characterize such structure, among other EOR diagnostics.

The Low Frequency Demonstrator of the MWA is designed to deliver high-quality observations of the 21cm reheating and reionization signatures, and details of our approaches and goals are given in these web pages. This image below shows the sort of structure predicted to exist, and the MWA will look for such fluctuations using sophisticated statistical techniques, fueled by the precision treatment of an extraordinarily wide field of view that is the technological centerpiece of the MWA project.

What Makes the MWA a Good EOR Instrument?

The MWA has been designed from the ground up with EOR measurements in mind. The key properties of relevance are (a) a very wide, seamless field of view, and (b) a comprehensive and robust coverage of spatial frequency space, equivalent to a superb point spread function with low sidelobes. The former generates low-cost sensitivity to the EOR power spectrum of fluctuations by increasing the number of independent samples of sky brightness, while the latter improves our ability to deal with contaminating foreground radio emission of various kinds. Combined with a superbly radio-quiet site, the MWA is designed to be the premier first-generation EOR measurement instrument.

Detecting and Measuring the Statistical EOR Signal

The MWA does not have sufficient point source sensitivity to directly image individual features in the EOR HI signal. That capability must await a manyfold increase in physical collecting area. This lack of collecting area can, however, be effectively compensated for by increasing the effective field of view of the instrument. By measuring the intensity at many locations of the sky (and at many locations along the line of sight, by using different frequencies corresponding to different redshifts), we can obtain a statistical measure of the fluctuations even when the signal is too weak to see inany given pixel. This power spectrum measurement is similar to the type of measurement done by microwave background experiments, except that for the EOR we use three dimensions, not two. MWA has been designed to yield a high fidelity measurement of the EOR power spectrum shape using a few hundred hours of observing time.

Imaging "holes" Caused by QSO Stromgrem Spheres

Early quasars, which generate copious amounts of ionizing radiation, are expected to create roughly spherical ionized "bubbles" in the mostly neutral, pre-EOR intergalactic medium. These bubbles are analogous to the so-called Stromgren spheres seen around hot young stars. The MWA will be capable of imaging these bubbles, which will appear as dark spots against the relatively uniform hydrogen glow generated by the surrounding neutral medium. As with the EOR power spectrum measurement, detection of such holes should be possible with a few hundred hours of MWA obserfving time.

The Foreground Subtraction Problem

A major challenge for any EOR experiment is the fact that the signals being sought are far fainter than other types of emission from the sky. Filtering out or subtracting these troublesome foregrounds is a principal focus of instrument design and data analysis techniques. Fortunately, many of the strongest foregrounds have properties which are easily separable from the EOR signals, and one of the strongest discriminants is that most foregrounds are spectrally smooth. By contrast, the EOR signals are expected to show strong fluctuations over small ranges of frequency. One of the most difficult foregrounds to deal with is polarized emission from our own galaxy. While it is intrinsically smooth, the clumpy interstellar medium imprints spatial and frequency structures on it which will be difficult to remove. A high precision polarimetric calibration is required, and has been an important design driver for the array.